Mahjoubi, E.M. and Chauvet, A. and Badra, L. and Sizaret, S. and Barbanson, L. and El Maz, A. and Chen, Y. and Amann, M. (2016) Structural, mineralogical, and paleoflow velocity constraints on Hercynian tin mineralization: the Achmmach prospect of the Moroccan Central Massif. Mineralium Deposita, 51 (3). pp. 431-451.

Full text not available from this repository.
Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

The Achmmach tin mineralization (NE of the Moroccan Central Massif) is associated with tourmaline-rich alteration halos, veins, and faults hosted in sandstones and metapelites of the Upper Visean-Namurian. These deposits are reported to be late Hercynian in age and related to the emplacement of late-orogenic granite not outcropping in the studied area. Structural and paragenetic studies of the Achmmach tin deposit were conducted in order to establish a general model of the mineralization. From field constraints, the late Hercynian phase is marked by a transition from transpression to extension with deformation conditions evolving from ductile to brittle environments. The transpression (horizontal shortening direction roughly trending E-W) is coeval with the emplacement of the first tourmaline halos along several conjugated trends (N070, N020, and N120). Thereafter, a tourmaline-rich breccia formed in response to the fracturing of early tourmaline-altered rocks. Subsequently, during the extensional phase, these structures were reactivated as normal faults and breccias, allowing the formation of the main tin mineralization (cassiterite) associated with a wide variety of sulfides (arsenopyrite, chalcopyrite, sphalerite, galena, pyrrhotite, bismuthinite, pyrite, and stannite). This evolution ends with fluorite and carbonate deposition. The hydrothermal fluid flow velocity, calculated by applying statistical measures on the tourmaline growth bands, varies with the lithology. Values are lower in metapelites and higher in breccia. In the general evolution model proposed here, tourmaline alteration makes the rock more competent, allowing for brittle fracturing and generation of open space where the main Sn mineralization was precipitated. © 2015, Springer-Verlag Berlin Heidelberg.

Item Type: Article
Uncontrolled Keywords: breccia; cassiterite; fluid flow; Hercynian orogeny; hydrothermal fluid; mineralization; mineralogy; ore deposit; structural control; tectonic setting; tin; tourmaline, Morocco
Subjects: Earth and Planetary Sciences
Divisions: SCIENTIFIC PRODUCTION > Earth and Planetary Sciences
Depositing User: Administrateur Eprints Administrateur Eprints
Last Modified: 31 Jan 2020 15:46
URI: http://eprints.umi.ac.ma/id/eprint/2877

Actions (login required)

View Item View Item